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Abstract. In the non-symmetric gravitational theory (NGT) the space-time metric gµν departs from the
flat-space Minkowski form ηµν in such a way that it is no longer symmetric, i.e. gµν �= gνµ. We find that in the
most conservative such scenario coupled to quantum field theory, which we call minimally non-symmetric
quantum field theory (MNQFT), there are experimentally measurable consequences similar to those from
non-commutative quantum field theory (NCQFT). This can be expected from the Seiberg–Witten map
which has recently been interpreted as equating gauge theories on non-commutative space-times with
those in a field-dependent gravitational background. In particular, in scattering processes such as the pair
annihilation e+e− → γγ, both theories make the same striking prediction that the azimuthal cross section
oscillates in φ. However the predicted number of oscillations differs in the two theories: MNQFT predicts
between one and four, whereas NCQFT has no such restriction.

1 Introduction

The search for a unification of gravity and quantum field
theory over the last hundred years has led to several promis-
ing candidates, most notably string theories. While these
theories are not at the stage where they can describe physics
completely at all energies, they can nonetheless make some
interesting predictions at low energies. One such predic-
tion [1, 2] is that the coordinates of space-time xµ, when
considered as operators x̂µ, do not commute:

[x̂µ, x̂ν ] = iθµν . (1)

Space-time is then described by this theory of non-commu-
tative geometry (NCG) [3,4].The real antisymmetric tensor
θµν parameterizes the degree of non-commutivity: ordinary
commuting space-time is restored in the θµν → 0 limit.
When θµν �= 0 the theory is Lorentz violating and subject to
severe experimental constraints on the various components
of θµν , ranging from hydrogen spectra, e+e− scattering,
and various CP -violating quantities (see [5] for a review
of the phenomenology). The collection of these constraints
implies that the dimensionful parameters θµν should not
exceed 1 (TeV)−2 upcoming particle colliders with center-
of-mass energies near or above the TeV scale will be able
to test this bound.1 The Lorentz violation in NCG may

� This work was supported by the Department of Physics at
Tsinghua University and the Chinese Academy of Sciences.

a e-mail: kest@mail.tsinghua.edu.cn
b e-mail: ylma@itp.ac.cn
1 In some considerations in nuclear physics this limit can

be pushed many orders of magnitude stronger, however this
assumes that θµν is constant over solar-system scales [6].

be viewed as the presence of a preferred frame of reference
in space parameterized by

−→
θ ≡ εijkθjk with ε being the

Levi-Cevita symbol. One consequence of this in the non-
commutative quantum field theory (NCQFT) framework is
that the differential cross section of a scattering experiment,
suitably binned over time to take into account the Earth’s
motion in this preferred frame, should have an oscillatory
dependence on the azimuthal angle, i.e.

dσ
dφ

⊃ A(cosφ, θµν), (2)

where A vanishes in the θµν → 0 limit. Since the stan-
dard model prediction for the azimuthal distribution is
flat, (2) would be a particularly striking signal of NCG.
In Sect. 2 we review the calculation of one such scattering
cross section, that of e+e− pair annihilation into photons,
and demonstrate the dependence on the azimuthal angle.
This dependence arises from the appearance of terms in
the cross section proportional to some in- or out-going
momenta contracted into θµν , i.e. pµθµνq

ν where p, q are
respectively electron and photon momenta, for example.
Such terms depend explicitly on the sine or cosine of the
azimuthal angle of the outgoing photons.

Since the antisymmetric contraction of momenta
pµθµνq

ν in NCQFT is what leads to the angular depen-
dence in (2), we may ask whether some other theory with
an antisymmetric object aµν may also lead to terms like
pµaµνq

ν in the scattering cross section from which (2) (with
θµν → aµν) follows. One candidate which minimally de-
parts from standard field theory postulates that the space-
time metric gµν is not symmetric, i.e. gµν �= gνµ. Then
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the antisymmetric object aµν is 1
2 (gµν − gνµ). Such a non-

symmetric gravity theory (NGT) has appeared in the lit-
erature previously [7]. In particular, we may write

gµν = g(µν) + g[µν], (3)

decomposing g into its symmetric andantisymmetric pieces.
The contravariant tensor gµν is defined as usual:

gµνgµρ = δν
ρ . (4)

As in conventional general relativity with a symmetric met-
ric, one can define a Lagrangian density L =

√−gR, where
g ≡ det(gµν) and R is the Ricci scalar, and derive field
equations for g(µν) and g[µν].

There has been extensive work analyzing the effects of
g[µν] for black hole solutions of the field equations, galaxy
dynamics, stellar stability, and other phenomena of cos-
mological and astrophysical relevance [8–10] where g(µν)
and g[µν] may be of comparable size.

In the context of particle physics however, we may start
with the assumption that the curvature of space in the
region of interest is small:

gµν ≈ ηµν + h(µν) + a[µν], (5)

where η is the usual Minkowski metric and the symmet-
ric and antisymmetric components h and a both2 satisfy
aµν , hµν � 1, ∀µ, ν. We further assume that these fields’
dynamics is negligible in the region of interest and we may
treat them as background fields. The effects of the symmet-
ric tensor h on particle physics in this limit has been studied
elsewhere (see for example [11–13]). We would like to fo-
cus our attention here on the effects of the antisymmetric
piece aµν .

In this work we therefore take hµν = 0. The compo-
nents of aµν are undetermined and random under the sole
restriction that aµν = O(ε) � 1, ∀µ, ν. This amounts to a
space-time metric which fluctuates on scales too small for
experiment to probe. Hence 〈aµν〉 = 0 and O(ε) effects do
not appear in any measurements. However 〈a2

µν〉 �= 0 and
O(ε2) effects will appear and may have a significant impact.
We term this the minimally non-symmetric quantum field
theory (MNQFT) and will say more of it later.

In this paper we demonstrate that both NCQFT and
MNQFT predict azimuthal differential scattering cross sec-
tions which oscillate in φ. In Sect. 2 we first present the
NCQFT result, then in Sect. 3 we derive the prediction from
MNQFT. Section 4 discusses the above results, in particu-
lar that their similarity can be expected on some level via
the Seiberg–Witten map [2], and considers whether other
experiments may distinguish the two theories.

2 A short review of the NCQFT calculation

As the lowest order contribution to pair annihilation in
NCQFT has already appeared in full detail in the liter-
ature [14] we only review some essential features of the
calculation here.

2 Note that aµν cannot be absorbed into ηµν or h by a
redefinition of coordinates.
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Fig. 1a–c. NCQED Feynman diagrams for e+e− → γγ

We first very briefly mention a few fundamental points
in the NCQFT theory necessary for the calculation. In
particular, the conventional prescription for converting an
ordinary quantum field theory (QFT) into NCQFT is to
replace ordinary products between fields with a certain
“star-product”:

(f � g)(x) ≡ eiθµν∂y
µ∂z

ν f(y)g(z) |y=z=x . (6)

This definition reproduces [xµ, xν ]∗ ≡ xµ ∗ xν − xν ∗ xµ =
iθµν and hence serves to parameterize NCQFT on coordi-
nate space. Other features of QFT remain unchanged. In
particular we can write the NCQED action

SNCQED =
∫

d4xFµν ∗ Fµν (7)

=
∫

d4xFµνFµν ,

where the second equality follows by integration by parts.
The NCQED field strength is defined by Fµν ≡ ∂µAν −
∂νAµ − i[Aµ, Aν ]∗. Note that the cubic and quartic terms
in F will introduce 3- and 4-point couplings for the pho-
ton. One can derive that the star-products in the NCQED
Lagrangian give new Feynman rules very similar to those
of QED modulo factors of θµν contracted into external leg
momenta. Computing the cross section for pair annihilation
in NCQED is therefore straightforward but more difficult
than in QED since there are three distinct diagrams as
shown in Fig. 1.

From these the authors of [14] found

dσ
dzdφ

=
α2

4s

[
u

t
+
t

u
− 4

t2 + u2

s2
sin2

(
1
2
k1µθ

µνk2ν

)]
(8)

= SM

−α2 t
2 + u2

s3

× sin2
( s

2
(θ01z + θ02(1 − z2) cosφθ03(1 − z2) sinφ)

)
,

where “SM” is the standard model result, s, t, u are the
usual Mandelstam variables and z is the cosine of the po-
lar angle in the laboratory center-of-mass frame. Here the
oscillatory dependence on φ is clear. Note that the number
of full oscillations in dσ

dzdφ as φ goes from 0 to 2π does not
have a strict upper bound: the higher the product of s and
θ0i, the more oscillations.
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3 The MNQFT calculation

We now put the NCQFT result to the side and turn to a
completely different theory, MNQFT. In this section we will
see that MNQFT also leads to an oscillatory cross section.
The starting point of our calculation is the substitution
ηµν → gµν = ηµν + aµν in the Lagrangian for QED:3

L =
√−g (9)

×
[
ψ(i∂µγ

µ −m)ψ − 1
4
FµνFµν − eψγµψAµ + ξR

]
,

where all space-time index contractions are performed with
the full metric gµν , and we hereafter neglect the curvature
term ξR. This is what we take as the minimal prescription
for incorporating NGT effects into a QFT calculation: just
replace the flat-space metric ηµν with the full metric gµν .
Other terms could enter the Lagrangian in (9) which ex-
plicitly depend on aµν , such as aµνF

µν , and may of course
be generated by quantum effects, but as such they will be
suppressed by loop factors and we hereafter neglect them
as they will not change the qualitative features of our cal-
culation.

The Feynman propagators for the electron and photon
satisfy, respectively,

[i∂µγ
µ −m]SF(x, x′) = [−g]−1/2

δn(x− x′),[
gµν�2]Dρν

F (x, x′) = [−g]−1/2
δν
µδ

n(x− x′), (10)

as in general curved spaces. Written in momentum space,

SF(x, x′) = [−g]−1/2
δn(x− x′)

pµγ
µ +m

p2 −m2 , (11)

Dρν
F (x, x′) = [−g]−1/2

δn(x− x′)
gρν

p2 .

The Dirac equation in curved space is (iγµ∂µ −m)ψ = 0,
where in our case the gamma matrices are of the usual
4-dimensional form satisfying {γµ, γν} = 2ηµν (see the
appendix).

As in ordinary QED we have two diagrams which con-
tribute to pair annihilation (see Fig. 2). These have the
combined amplitude

iM = −ie2ε∗µ(k2)εν(k1)ū(p2) (12)

×
[
γµ(p1/− k1/+m)γν

(p1 − k1)2 −m2 +
γν(p1/− k2/+m)γµ

(p1 − k2)2 −m2

]
u(p1)

= −ie2ε∗µ(k2)εν(k1)ū(p2)

×
[
γµ − k1/γ

ν + 2γµηναp1α

−2p1 · k1

+
−γνk2/γ

µ + 2γνηµαp1α

−2p1 · k2

]
u(p1).

3 In the vierbien formalism, we would take gµν =
V α

µ (x)V bην(x)ηαβ , where the vierbiens V relate the general
coordinates to some normal coordinates erected at x in terms
of which the metric becomes Minkowski. However in the present
case this is not possible as gµν is not symmetric.
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Fig. 2a,b. Definitions of momenta in the MNQFT calculation

Special care is required in dealing with photon polar-
ization. In general curved spaces the concept of photon
polarization loses its meaning, but in our case the met-
ric is only perturbed slightly from the diagonal Minkowski
form, so we assume we may retain the implicit definition
of polarization in setting kµε

µ = 0. We can rewrite (12) as

iM = ε∗µ(k2)εν(k1)Mµν , (13)

where Mµν contains only momenta variables, Dirac ma-
trices, and their contractions with ηµν . The square of this
amplitude summed over photon polarizations and averaged
over electron spins is

1
4

∑
spins

|M |2 =
1
4

2∑
i,j=1

|εi∗µ (k2)εjν(k1)Mµν |2 (14)

=
1
4

2∑
i,j=1

εi∗µ (k2)εiρ(k2)εj∗
σ (k1)εjν(k1)MµνMρσ.

Now this squared amplitude has twoparts:MµνMρσ, which
depends only on the external momenta, and the polariza-
tion product εi∗µ (k2)εiρ(k2)εj∗

σ (k1)εjν(k1), which implicitly
contains factors of the metric gµν (and hence also aµν). In
the final calculation only squares (or fourth powers, which
we may neglect in the first approximation) of the elements
of aµν such as a2

01, a
2
13, etc. can appear since any odd power

of some element of aµν averages to zero by construction.
Following this prescription, and taking 〈a2

µν〉 = O(ε2) for
simplicity, we obtain a spin-averaged squared matrix ele-
ment of (see the appendix for details)

1
4

∑
s

|M|2 = SM

+8ε2
α2

4s sin3 θ
(15)

×
{

− 1
4

(1 + cos θ)2(1 + 8 cos 2θ)(sinϕ+ cosϕ)

− sin θ
{
cos θ sin2 ϕ[cos θ(sinϕ+ cosϕ) − sin2 θ]

}
+(1 − cos θ)2

{
2(1 − cosϕ) cos2 ϕ(sinϕ+ cosϕ)

}}
.

As in NCQFT, we see the appearance of terms that depend
on the sine or cosine of the azimuthal angle. In Fig. 3 we
plot the resulting differential cross section against φ (hav-
ing integrated over the polar angle for 0.1 < cos θ < 0.9).
Note that in this particular case where all the 〈a2

µν〉 are
of comparable size the differential cross section undergoes
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Fig. 3. Ratio of the differential cross section in φ in MNQFT
to that of SM, for the case where all the elements of aµν are
of equal average magnitude. Here we have integrated over the
polar angle for 0.1 < cos θ < 0.9

one full oscillation in φ. This is because upon numerically
integrating over θ the (sinφ+cosφ) term in (15) dominates.
One could adjust the 〈a2

µν〉 to allow terms with different
φ-dependence to dominate, but since all terms are pro-
portional to either sini φ or cosi φ (i = 1, . . . , 4) only one
to four oscillations are possible. We further observe from
Fig. 3 that the MNQFT oscillates about the SM result.
This contrasts from the prediction in NCQFT (see (8))
where the contribution to dσ/dφ is strictly negative and
may undergo any number of oscillations.

4 Discussion

We have seen in the foregoing that both the NCQFT and
MNQFT theories make some similar predictions in high
energy processes; we would like to remark here that per-
haps this is not so coincidental. The reason why we believe
these theories to be more closely related than it seems
apparent at first inspection derives from a well-known
correspondence between ordinary gauge theories on non-
commutative spaces and more complicated gauge theories
on ordinary spaces. This is formally known as the Seiberg–
Witten map [2]. Seiberg and Witten (SW), starting from
the action of the string worldsheet Σ in the presence of a
constant “magnetic field” B,

S =
1

4πα′

∫
Σ

(
gij∂ax

i∂axj − 2πiα′Bijε
ab∂ax

i∂bx
j
)
,

(16)
restricted to the case whereΣ is a disc (i.e. describing open
strings dynamics), obtain two interesting results upon ap-
plying the boundary conditions on (16):
(1) the open strings feel an “effective metric” given by
Gij = gij − (2πα′)2

(
Bg−1B

)
ij

;
(2) space-time coordinates do not commute, in that

[xµ(τ), xν(τ)] = iθµν whereθij = 2πα′
(

1
g+2πα′B

)[ij]
. Thus

we already see that non-commuting coordinates are related
to the space-time metric. Now, taking an approximation
of (16) on aD-branewhere fields are taken to be slowly vary-
ing yields the Dirac–Born–Infield (DBI) action [15], whose
specific form depends on one’s regularization scheme, SW
showed that using a Pauli–Villars scheme (preserving the
gauge symmetry of the open string gauge fields) leads to a
commutative DBI action; however in a point-splitting reg-
ularization scheme one obtains a non-commutative DBI
action which becomes non-commutative electromagnetism
in the α′ → 0 limit. Since physics does not depend on one’s
choice of regularization scheme, Seiberg and Witten proved
that these two actions are equivalent in the sense that there
exists a map (via field redefinitions), the Seiberg–Witten
map, between them. Recent work has explicitly demon-
strated this [16–18]:4 in a point-splitting scheme in four
dimensions one obtains

Ŝ ∼
∫

d4xF̂µν � F̂
µν , (17)

where F̂µν = ∂µÂν −∂νÂµ − iÂµ�Âν +iÂν �Âµ is the non-
commutative field strength; i.e. this regularization scheme
gives a theory described by NCQFT. Applying the SW
map to the above gives the action

S ∼
∫

d4x
√

det (1 + Fθ)
(

1
1 + Fθ

F
1

1 + Fθ
F

)
, (18)

i.e. an ordinary gauge field theory on a space defined by a
non-symmetric metric:

gµν = ηµν + (Fθ)µν . (19)

We therefore see that the equivalence of gauge theory on
a non-commutative space and the ordinary theory with a
field-dependent background metric is a necessary conse-
quence of the SW map. It is remarkable that our simplistic
treatment in the present paper, using a minimal coupling
ansatz and the metric gµν = ηµν + aµν rather than that
in (19), confirms the similarity of the two theories at the
phenomenological level; that the exact predictions of NC-
QFT and MNQFT we have presented for e+e− scattering
differ somewhat may be due to taking the components of
aµν to be random space-dependent functions, whereas in
NCQFT the specific components of θµν are taken to be
fixed and measurable. We could perhaps therefore view
MNQFT as a certain limit of NCQFT where θµν is no
longer a simple constant tensor, but a more detailed in-
vestigation of this correspondence will have to wait for a
future publication.

From the analysis of the preceding sections we may con-
clude that in the pair annihilation process the predicted
number of oscillations in the azimuthal differential cross
section depends on whether space-time is described by NC-
QFT or MNQFT. If the former, the number of oscillations

4 We simplify many details in the ensuing discussion; the
interested reader can pursue the references cited for a com-
plete treatment.
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is unrestricted, whereas the latter predicts between one and
four. In particular, if less than one oscillation is observed,
MNQFT cannot be responsible and NCQFT would be a
candidate explanation with sθ0i < 1. Moreover, in contrast
to MNQFT the NCQFT cross section is strictly below the
SM prediction. We note further that in NCQFT the number
of oscillations grows with center-of-mass energy as well and
in principle one could test this by running a high center-of-
mass e+e− linear collider at varying energies if statistics
allow for it.

We believe the foregoing comments will apply to any
scattering process, e.g. Moller scattering, Bhahbha scatter-
ing, etc. [19] though the NCQFT predictions will be more
robust in processes which do not involve QCD, as the non-
commutative version of QCD has not been as thoroughly
developed as NCQED (however, see [20] for encouraging
work in this direction).

Finally, we remark on other types of experiments be-
sides those involving high energy scattering. One might
expect that low energy experiments would constrain MN-
QFT as severely as NCQFT. But due to the antisymme-
try of the metric in MNQFT the definition of distance
ds2 = gµνdxµdxν is unchanged and independent of aµν so
that it is not trivial to constrain the theory this way. Non-
relativistic quantum mechanics equipped with a Hamilto-
nian H = p2/2m+V (r) is therefore independent of aµν in
contrast to the case in NCQFT where θµν may have ob-
servable effects in the hydrogen spectrum. One must go to
QED corrections in atomic physics to see the effect of aµν

but here we expect the effect to be small; the correction to
the anomalous magnetic moment of the muon in MNQFT,
for example, is zero at the one-loop level [21]. Moreover
MNQFT is CP -conserving, unlike NCQFT which is most
strongly constrained by non-observation of a CP -violating
electron electric dipole moment. But in all of the above
experiments the signal of NCQFT or MNQFT will only
be a small shift in a measured quantity such as an energy-
level splitting, not as conspicuous a signal as an oscillating
azimuthal cross section, which we claim to be a superior
signal of one theory or the other. In the realm of cosmol-
ogy and astrophysics there are many interesting predictions
from NCG and NGT; the former predicts novel features of
the cosmic microwave background spectrum, for example,
while the latter predicts a variety of effects, e.g. with re-
spect to black hole solutions of the Einstein field equations,
galaxy dynamics, stellar stability, etc. [8–10]. Experiments
in this direction may more strongly distinguish NCG from
NGT as the latter is a purely gravitational effect.
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Chinese Academy of Sciences and the National Science Foun-
dation of China (NSFC).

Appendix
Gamma matrices in our non-symmetric space

In the most general curved space the Dirac matrices de-
part from the usual 4-dimensional form, but in our case,

where the metric differs from Minkowski space by an anti-
symmetric piece, this is not the case: acting on the Dirac
equation on the left with (−iγν∂ν −m) gives

(−iγν∂ν −m) (iγµ∂µ −m)ψ = 0

=
(
γνγµ∂ν∂µ +m2)ψ = 0

=
(

1
2

{γµ, γν} ∂µ∂ν +m2
)
ψ = 0, (20)

which must be the Klein–Gordon equation (∂2 + m2)ψ
= 0 in our antisymmetric space-time (note that it is the
same as in flat space). Therefore the Dirac algebra in
this antisymmetric space is unchanged from the flat-space
case, i.e. {γµ, γν} = 2ηµν still holds with the usual 4-
dimensional matrices.

Pair annihilation

Starting from the matrix element in (12) and making the
substitutions p1 → p, p2 → −p′, k1 → −k, k2 → k′ gives

iM = −ie2ε∗µ (k′) εν (k) ū (p′)

×
[
γµ (p/+ k/+m) γν

(p+ k)2 −m2
+
γν (p/− k/′ +m) γµ

(p− k′)2 −m2

]
u(p)

= −ie2ε∗µ (k′) εν(k)ū (p′) (21)

×
[
γµk/γν + 2γµηναpα

2p · k +
−γνk/′γµ + 2γνηµαpα

−2p · k′

]
u(p).

From the kinematic definitions of kµ and k′
µ we can get

εµ(k) and εµ(k′), so that

1
4

∑
s

|M|2 =
e4

4

∑
s

{
gµλε

∗λ (k′) gνϕε
ϕ(k)ū (p′)

×
[
γµk/γν + 2γµηνρpρ

2p · k

+
−γνk/′γµ + 2γνηµρpρ

−2p · k′

]
u(p)

}
×
{
gαδε

∗δ(k′)gβθε
θ(k)ū(p′)

×
[
γαk/γβ + 2γαηβσpσ

2p · k

+
−γβk/′γα + 2γβηασpσ

−2p · k′

]
u(p)

}†
=
e4

4
gµλgνϕgαδgβθε

∗λεδ(k′)(k′)ε∗θ(k)εϕ(k)

×tr
{

(p/′ +m)

×
[
γµk/γν + 2γµηνρpρ

2p · k +
−γνk/′γµ + 2γνηµρpρ

−2p · k′

]
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×(p/+m)

×
[
γαk/γβ + 2γαηβσpσ

2p · k +
−γβk/′γα + 2γβηασpσ

−2p · k′

]}
≡ e4

4
gµλgνϕgαδgβθε

∗λ(k′)εδ(k′)ε∗θ(k)εϕ(k)

×
[

I
(2p · k)2 +

II
(2p · k)(2p · k′)

+
III

(2p · k)(2p · k′)

+
IV

(2p · k′)2

]
, (22)

where

I = tr {(p/′ +m)(γµk/γν + 2γµηνρpρ)

× (p/+m)(γαk/γβ + 2γαηβσpσ)
}

= tr
{
p/′(γµk/γν + 2γµηνρpρ)p/(γαk/γβ + 2γαηβσpσ)

}
= tr

{
p/′γµk/γνp/γαk/γβ

}
+2tr

{
p/′γµk/γνp/γαηβσpσ

}
+ 2tr

{
p/′γµηνρpρp/γ

αk/γβ
}

+4tr
{
p/′γµηνρpρp/γ

αηβσpσ

}
, (23)

IV = I(k → k′), (24)

II = tr {(p/′ +m)(γµk/γν + 2γµηνρpρ)

× (p/+m)(−γβk/′γα + 2γβηασpσ)
}

= −tr
{
p/′γµk/γνp/γβk/′γα

}
+2tr

{
p/′γµk/γνp/γβηασpσ

}− 2tr
{
p/′γµηνρpρp/γ

βk/′γα
}

+4tr
{
p/′γµηνρpρp/γ

βηασpσ

}
, (25)

III = II. (26)

After some calculation, we get

I = 32[(p′ � ε)(p � ε)(k � ε)(p � ε)

−(p′ � ε)(p · k)(ε � ε)(p � ε)
−(p′ · k)(ε � ε)(p � ε)(p � ε)
+(p′ · k)(p � ε)(k � ε)(p � ε)
+(p′ � ε)(k � ε)(p � ε)(p � ε)

−(p′ · p)(k � ε)(ε � ε)(p � ε)
+(p′ � ε)(p � ε)(p � ε)(p � ε)

−(p′ · p)(p � ε)(p � ε)(ε � ε)
+(p′ � ε)(k � ε)(p � ε)(k � ε)

−(p′ · p)(k � ε)(k � ε)(ε � ε)]
= 32[(p′ � ε)(p � ε)2(k � ε)

−(p′ � ε)(p · k)(ε � ε)(p � ε)
−(p′ · k)(ε � ε)(p � ε)2
+(p′ · k)(p � ε)2(k � ε) + (p′ � ε)(k � ε)(p � ε)2

−(p′ · p)(k � ε)(ε � ε)(p � ε)
+(p′ � ε)(p � ε)3 − (p′ · p)(p � ε)2(ε � ε) (27)

+(p′ � ε)(k � ε)2(p � ε) − (p′ · p)(k � ε)2(ε � ε)],
IV = 32[(p′ � ε)(p � ε)2(k � ε)

−(p′ � ε)(p · k′)(ε � ε)(p � ε)

−(p′ · k′)(ε � ε)(p � ε)2 + (p′ · k′)(p � ε)2(k′ � ε)

+(p′ � ε)(k′ � ε)(p � ε)2

−(p′ · p)(k′ � ε)(ε � ε)(p � ε) + (p′ � ε)(p � ε)3

−(p′ · p)(p � ε)2(ε � ε) + (p′ � ε)(k′ � ε)2(p � ε)

−(p′ · p)(k′ � ε)2(ε � ε)], (28)

II = 16[(p′ � ε)(p � ε)2(k � ε)

−(p′ � ε)(p · k)(ε � ε)(p � ε)
−(p′ · k)(ε � ε)(p � ε)2 + (p′ · k)(p � ε)2(k � ε)
+(p′ � ε)(k � ε)(p � ε)2

−(p′ · p)(k � ε)(ε � ε)(p � ε)
+(p′ � ε)(p � ε)3 − (p′ · p)(p � ε)2(ε � ε)
+(p′ � ε)(k � ε)(k′ � ε)(p � ε)

−(p′ · p)(k � ε)(k′ � ε)(ε � ε)], (29)

III = II; (30)

in the above, we take the polarization of the photons to be
real and used the definition

k · p = kµη
µνpν , (31)

p � ε = pµη
µνgναε

α, (32)

ε � ε = gµαε
αηµνgνβ .ε

β . (33)

Now define

pµ = (E, 0, 0, E), p′
µ = (E, 0, 0,−E), (34)

kµ = (E,E sin θ cosϕ,E sin θ sinϕ,E cos θ), (35)

k′
µ = (E,−E sin θ cosϕ,−E sin θ sinϕ,−E cos θ); (36)

then we get

ε1µ = (0, cosϕ cos θ, sinϕ cos θ,− sin θ), (37)

ε2µ = (0,− sinϕ, cosϕ, 0). (38)

Now rewrite the metric matrix as

(aµν) =


1 a b c

−a −1 d h

−b −d −1 r

−c −h −r −1

 , (39)

where a, b, c, d, h, r are all much less than unity. Note that
in the case a = b = c = d = h = r we would have

p · k = p′ · k′ = E2(1 − cos θ), (40)
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p · k′ = p′ · k = E2(1 + cos θ), (41)

p � ε1 = −E(1 + a) sin θ

+2aE cos θ(sinϕ+ cosϕ), (42)

p � ε2 = 2aE(sinϕ+ cosϕ), (43)

p′ � ε1 = E(1 − a) sin θ, (44)

p′ � ε2 = 0, (45)

k � ε1 = E[a(1 + cos θ)(sinϕ+ cosϕ)

+(1 − a) sin θ cos θ sinϕ cosϕ

− sin θ cos θ(1 − cosϕ)

−a sin θ + sin θ cos θ sin2 ϕ], (46)

k � ε2 = E[a(1 + cos θ)(sinϕ+ cosϕ)

+a sin θ(sin2 ϕ− cos2 ϕ) + sin θ sin2 ϕ], (47)

k′ � ε1 = E[−a(1 − cos θ)(sinϕ+ cosϕ)

−a sin θ], (48)

k′ � ε2 = E[a(1 − cos θ)(sinϕ+ cosϕ)

+a sin θ cos 2ϕ− sin θ sin 2ϕ], (49)

ε1 � ε1 = −2a2 sin 2θ cosϕ (50)

−(1 + a2)[sin2 θ + cos2 θ(sinϕ+ cosϕ)],

ε2 � ε2 = −(1 + a2). (51)

To a first approximation we need only keep terms in the
scattering cross section proportional to any one of a2, b2,
c2, d2, h2, r2. This gives the following results.

a-dependent terms

I = 32E4
{

(cos θ cosϕ+ sin θ) (a cos θ cosϕ− sin θ)

×
[
(a cos θ cosϕ+ a cos θ cosϕ+ sin θ)2

+ (− cos θ + cosϕ sin θ + 1)
]

+2
[
(a cos θ cosϕ)2

+ (a cos θ cosϕ+ sin θ) (a cos θ cosϕ)

+ (a cos θ cosϕ+ sin θ)2
]}

, (52)

II = 16E4 {(a cos θ cosϕ+ sin θ)

×
[
(a cos θ cosϕ− sin θ)

×
{

(a cos θ cosϕ)2

+3 (a cos θ cosϕ+ sin θ) (a cos θ cosϕ)

+ (a cos θ cosϕ+ sin θ)2

+ (− cos θ + a cosϕ sin θ + 1)}

+ (a cos θ cosϕ+ 1) (a cos θ cosϕ+ sin θ)

× (cos θ + a cosϕ sin θ + 1)
]

+2
[
(a cos θ cosϕ+ sin θ)2 + (a cos θ cosϕ)

× {a cos θ cosϕ+ (a cos θ cosϕ+ sin θ)}]}, (53)

IV = 32E4
{

(a cos θ cosϕ+ sin θ) (a cos θ cosϕ− sin θ)

× {a cos θ cosϕ+ (a cos θ cosϕ+ sin θ)}2

+ (cos θ − a cosϕ sin θ + 1)

− (a cos θ cosϕ+ 1) (a cos θ cosϕ+ sin θ)

× (cos θ + a cosϕ sin θ − 1) (54)

+2
{

(a cos θ cosϕ)2 + (a cos θ cosϕ+ sin θ)

× (a cos θ cosϕ) + (a cos θ cosϕ+ sin θ)2
}}

.

b-dependent terms

I = 32E4
{

(sin θ + b cos θ sinϕ) (b cos θ sinϕ− e sin θ)

×
[
{b cos θ sinϕ+ (sin θ + b cos θ sinϕ)}2

+ (− cos θ + b sin θ sinϕ+ 1)
]

+ (b cos θ sinϕ+ 1) (sin θ + b cos θ sinϕ)

× (cos θ + b sin θ sinϕ+ 1)

+2
[
(b cos θ sinϕ)2

+ (sin θ + b cos θ sinϕ) (b cos θ sinϕ)
]

+ (sin θ + b cos θ sinϕ)2
}
,

II = 16E4
{

(sin θ + b cos θ sinϕ)

×
[
(b cos θ − e sin θ)

×
{

(b cos θ sinϕ)2

+3 (sin θ + b cos θ sinϕ) (b cos θ sinϕ)

+ (sin θ + b cos θ sinϕ)2

+ (− cos θ + b sin θ sinϕ+ 1)
}

+ (b cos θ sinϕ+ 1) (sin θ + b cos θ sinϕ)

× (cos θ + b sin θ sinϕ+ 1)
]

+2
[
(sin θ + b cos θ sinϕ)2

+ (b cos θ sinϕ)
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× {b cos θ sinϕ+ (sin θ + b cos θ sinϕ)}
]}
,

IV = 32E4
{

(sin θ + b cos θ sinϕ)

×[(b cos θ sinϕ− sin θ)

×{[b cos θ sinϕ+ (sin θ + b cos θ sinϕ)]2

+ (cos θ − b sin θ sinϕ+ 1)
}

− (b cos θ sinϕ+ 1) (sin θ + b cos θ sinϕ)

× (cos θ + b sin θ sinϕ− 1)
]

(55)

+2
{

(b cos θ sinϕ)2 + (sin θ + b cos θ sinϕ)

× (b cos θ sinϕ) + (sin θ + b cos θ sinϕ)2
}}

.

c-dependent terms

I = 32E4{(c− 1) sin θ

× [(c+ 1)(cos θ + 1)(c− 1) sin θ(−c sin θ + 1)

+
{
[(c− 1) sin θ + c sin θ]2 − (c− 1)(cos θ − 1)

}
× (c+ 1) sin θ]

−2(c− 1)

×{[(c− 1) sin θ]2 + c sin θ(c− 1) sin θ

+ (c sin θ)2
}}

,

II = E4{−(c− 1) sin θ

× [−(c+ 1)(cos θ + 1)(c− 1) sin θ(−c sin θ + 1)

−{[(c− 1) sin θ]2 + 3c sin θ(c− 1) sin θ + (c sin θ)2

+ (c− 1)(cos θ − 1)} (c+ 1) sin θ] − 2(c− 1),

×{[(c− 1) sin θ]2 + c sin θ[(c− 1) sin θ

+c sin θ]
}}
,

IV = 32E4
{

−(c− 1) sin θ

×
[(

2(c+ 1) sin2
(
θ

2

))
×(−(c− 1) sin θ)(−c sin θ + 1)

−
{

[(c− 1) sin θ + c sin θ]2 − 2(c− 1) cos2
(
θ

2

)}
×(c+ 1) sin θ

]
−2(c− 1)

{
[(c− 1) sin θ]2

+ c sin θ(c− 1) sin θ + (c sin θ)2
}}

. (56)

d-dependent terms

These all cancel.

h-dependent terms

I = 32E4{(sin θ − h cos θ cosϕ)

×[(h cos θ cosϕ− sin θ)

×{[−h cosϕ+ (sin θ − h cos θ cosϕ)]2

−(cos θ + h cosϕ sin θ − 1)
}

+(−h cosϕ+ 1)(sin θ − h cos θ cosϕ)

×(cos θ + h cosϕ sin θ + 1)
]

+2
{
(−h cosϕ)2

+(sin θ − h cos θ cosϕ)(−h cosϕ)

+ (sin θ − h cos θ cosϕ)2
}}

,

II = 16E4 {(sin θ − h cos θ cosϕ)

×[(h cos θ cosϕ− sin θ)
{
(sin θ − h cos θ cosϕ)2

+(−h cosϕ)[h cosϕ+ 3(sin θ − h cos θ cosϕ)]

− (cos θ + h cosϕ sin θ − 1)}
+(−h cosϕ+ 1)(sin θ − h cos θ cosϕ)

×(cos θ + h cosϕ sin θ + 1)]

+2
{
(sin θ − h cos θ cosϕ)2

−h cosϕ(h cosϕ− h cos θ cosϕ)}} ,
IV = 32E4 {(sin θ − h cos θ cosϕ)

× [−(h cosϕ+ 1)(sin θ − h cos θ cosϕ)

×(cos θ + h cosϕ sin θ − 1) + (h cos θ cosϕ− sin θ)

×{[h cosϕ+ (sin θ − h cos θ cosϕ)]2

+ (cos θ + h sin θ cosϕ+ 1)}]

+2
{
(h cosϕ)2 + (sin θ − h cos θ cosϕ)(h cosϕ)

+ (sin θ − h cos θ cosϕ)2
}}

. (57)

r-dependent terms

I = 32E4 {(sin θ − r cos θ sinϕ)

× [(r cos θ sinϕ− sin θ)

×{(−r sinϕ+ (sin θ − r cos θ sinϕ))2

− (cos θ + r sin θ sinϕ− 1)}
+(−r sinϕ+ 1)(sin θ − r cos θ sinϕ)

× (cos θ + r sin θ sinϕ+ 1)]

+2
{
(−r sinϕ)2 + (sin θ − r cos θ sinϕ)(−r sinϕ)
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+ (sin θ − r cos θ sinϕ)2
}}

,

II = 16E4 {(sin θ − r cos θ sinϕ)

× [(r cos θ sinϕ− sin θ)
{
(sin θ − r cos θ sinϕ)2

−r sinϕ[r sinϕ+ 3(sin θ − r cos θ sinϕ)]

− (cos θ + r sin θ sinϕ− 1)}
+(−r sinϕ+ 1)(sin θ − r cos θ sinϕ)

× (cos θ + r sin θ sinϕ+ 1)]

+2
{
(sin θ − r cos θ sinϕ)2 + (−r sinϕ)

× [r sinϕ+ (sin θ − r cos θ sinϕ)]}} ,
IV = 32E4 {(sin θ − r cos θ sinϕ)

× [−(r sinϕ+ 1)(sin θ − r cos θ sinϕ)

×(cos θ + r sin θ sinϕ− 1) + (r cos θ sinϕ− sin θ)

×{[r sinϕ+ (sin θ − r cos θ sinϕ)]2

+ (cos θ + r sin θ sinϕ+ 1)}]

+2
{
(r sinϕ)2 + (sin θ − r cos θ sinϕ)(r sinϕ)

+ (sin θ − r cos θ sinϕ)2
}}

, (58)

where we have removed terms dependent on two or more of
a, b, c, d, h, r. Now, simplifying by setting a2 = b2 = c2 =
d2 = h2 = r2 and after some algebra,

I = −32
aE4

8
{sin θ(1 + 8 cos 2θ)(sinϕ+ cosϕ)}

−32
a2E4

4
{2 cos θ + cos(θ − 4ϕ)} , (59)

IV = 32a
{

sin θ
[
2(sinϕ+ cosϕ) cos3 θ

− 1
2

(sinϕ+ cosϕ)
]

cos[2(θ − ϕ)]
}

(60)

+32a2 {2 sin θ(1 − cosϕ) cos2 ϕ(sinϕ+ cosϕ)
}
,

II = 16a

{
sin θ

×
[
2(sinϕ+ cosϕ− 1)

(
sin

3ϕ
2

+ cos
ϕ

2

)2

cos3 θ

+ sin2 θ sinϕ

]}
(61)

−16a2 {cos θ sin2 ϕ
[
cos θ(sinϕ+ cosϕ) − sin2 θ

]}
,

III = II. (62)

Finally, we have

1
4

∑
s

|M|2 = ordinary theory

+8a
e4

4 sin4 θ

×
{

− 1
8

(1 + cos θ)2

× {sin θ(1 + 8 cos 2θ)(sinϕ+ cosϕ)}
+ sin3 θ

×
[
2(sinϕ+ cosϕ− 1)

(
sin

3ϕ
2

+ cos
ϕ

2

)2

cos3 θ

+ sin2 θ sinϕ

]
+(1 − cos θ)2 sin θ

×
[
2(sinϕ+ cosϕ) cos3 θ − 1

2
(sinϕ+ cosϕ)

]

× cos[2(θ − ϕ)]

}

+8a2 e4

4 sin4 θ

×
{

− 1
4

(1 + cos θ)2 sin θ(1 + 8 cos 2θ)(sinϕ+ cosϕ)

− sin2 θ

×{cos θ sin2 ϕ
[
cos θ(sinϕ+ cosϕ) − sin2 θ

]}
+(1 − cos θ)2

×{2 sin θ(1 − cosϕ) cos2 ϕ(sinϕ+ cosϕ)
}}

= ordinary theory

+8a
e4

4 sin3 θ

×
{

− 1
8

(1 + cos θ)2(1 + 8 cos 2θ)(sinϕ+ cosϕ)

+ sin2 θ

×
[
2(sinϕ+ cosϕ− 1)

(
sin

3ϕ
2

+ cos
ϕ

2

)2

cos3 θ

+ sin2 θ sinϕ

]
+(1 − cos θ)2

×
[
2(sinϕ+ cosϕ) cos3 θ − 1

2
(sinϕ+ cosϕ)

]

× cos[2(θ − ϕ)]

}

+8a2 e4

4 sin3 θ
(63)

×
{

− 1
4

(1 + cos θ)2(1 + 8 cos 2θ)(sinϕ+ cosϕ)
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− sin θ
{
cos θ sin2 ϕ

[
cos θ(sinϕ+ cosϕ) − sin2 θ

]}
+(1 − cos θ)2

{
2(1 − cosϕ) cos2 ϕ(sinϕ+ cosϕ)

}}
.
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